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Abstract We investigate the structure of the nonequilibrium stationary state (NESS) of a
system of first and second class particles, as well as vacancies (holes), on L sites of a one-
dimensional lattice in contact with first class particle reservoirs at the boundary sites; these
particles can enter at site 1, when it is vacant, with rate α, and exit from site L with rate β.
Second class particles can neither enter nor leave the system, so the boundaries are semi-
permeable. The internal dynamics are described by the usual totally asymmetric exclusion
process (TASEP) with second class particles. An exact solution of the NESS was found by
Arita. Here we describe two consequences of the fact that the flux of second class parti-
cles is zero. First, there exist (pinned and unpinned) fat shocks which determine the general
structure of the phase diagram and of the local measures; the latter describe the microscopic
structure of the system at different macroscopic points (in the limit L → ∞) in terms of
superpositions of extremal measures of the infinite system. Second, the distribution of sec-
ond class particles is given by an equilibrium ensemble in fixed volume, or equivalently but
more simply by a pressure ensemble, in which the pair potential between neighboring par-
ticles grows logarithmically with distance. We also point out an unexpected feature in the
microscopic structure of the NESS for finite L: if there are n second class particles in the
system then the distribution of first class particles (respectively holes) on the first (respec-
tively last) n sites is exchangeable.

Keywords Exclusion process · Second class particles · Open system · Matrix ansatz ·
Local measure · Pressure ensemble

A. Ayyer (�) · J.L. Lebowitz
Department of Physics, Rutgers University, 136 Frelinghuysen Rd, Piscataway, NJ 08854, USA
e-mail: ayyer@physics.rutgers.edu

J.L. Lebowitz
e-mail: lebowitz@math.rutgers.edu

J.L. Lebowitz · E.R. Speer
Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd, Piscataway, NJ 08854, USA

E.R. Speer
e-mail: speer@math.rutgers.edu

mailto:ayyer@physics.rutgers.edu
mailto:lebowitz@math.rutgers.edu
mailto:speer@math.rutgers.edu


1010 A. Ayyer et al.

1 Introduction

In recent work Arita [1, 2], using a matrix ansatz, found the nonequilibrium stationary state
(NESS) of a new version of the widely studied one-dimensional totally asymmetric exclu-
sion process (TASEP) [3–11] (see in particular [12] for a recent review of matrix methods
for the TASEP). Some other models of two species exclusion processes which can be solved
by the matrix ansatz are the partially asymmetric version of the same model, studied in [13],
and, in a special case, the model of positive, negative and neutral charges moving under the
influence of an electric field studied first in [14]. Common to all these models is the fact that
the boundary rates have to be restricted to some special values in order to make the matrix
ansatz work.

The model is defined on a subset of the one dimensional lattice Z consisting of L sites.
Each site i, i = 1, . . . ,L, may be occupied by a first class particle, occupied by a second
class particle, or vacant; vacant sites are also referred to as holes, and first class particles
simply as particles. We shall let these three possible states correspond to the values 1, 2, and
0, respectively, of a random variable τi ; we also introduce the indicator random variables
ηa(i), a = 0,1,2, such that ηa(i) = 1 if τi = a and ηa(i) = 0 otherwise.

The internal (bulk) dynamics of the system are given by the usual rules for the TASEP
with second class particles [9]. The occupation variable τi at site i, i = 1, . . . ,L−1, attempts
when τi = 1 or 2 to exchange at rate 1 with τi+1; when τi = 1 the exchange succeeds iff
τi+1 = 0 or 2, while for τi = 2 it only succeeds if τi+1 = 0. In other words, a first class
particle at site i jumps to the right by exchanging with either a hole or second class particle
at site i + 1, while a second class particle can only jump if the site on its right is empty.
At site i = 1, first class particles enter the system at rate α provided that site 1 is vacant
(τ1 = 0); at site i = L, first class particles leave the system at rate β provided that site L is
occupied by a first class particle (τL = 1). Second class particles are thus trapped inside the
system; since only first class particles can cross the boundaries, we refer to these as semi-
permeable. (A similar system, but with a different form of semipermeable boundary, was
considered in [15]). An equivalent system is obtained by interchanging first class particles
with holes, left with right, and α with β , and this symmetry will be reflected in the structure
of the NESS. The latter will be determined by the parameters α,β and the density γ = n/L

of second class particles, where n is the number of second class particles in the system.
The phase diagram of this system in the limit L → ∞ is given in Fig. 1 [2]. The diagram

is determined by the distinct formulas for the (first class) particle current J1 in the different

Fig. 1 The cross section of the
phase diagram at a fixed γ
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regions:

J1 =

⎧
⎪⎨

⎪⎩

1−γ 2

4 , for α,β ≥ αc (region I),

α(1 − α), for α < αc,α < β (region II),

β(1 − β), for β < αc,β < α (region III);

(1.1)

here the critical value αc of α and β is

αc = 1 − γ

2
. (1.2)

The current J2 of the (trapped) second class particles must vanish and the current J0 of holes
satisfies J0 = −J1. Note that the form of J1 as a function of the parameters characterizes the
phase plane regions, and that J1 is continuous but not smooth across all the boundaries.

The phase diagram is similar to that of the open one component TASEP [7, 8] and indeed
in the limit γ → 0 reduces to it; moreover, in regions II and III the current is independent of
γ and takes the same values as in the one component case, although the size of these regions
shrinks as γ increases. As we discuss in Sect. 6, however, there will be residual differences
between the local microscopic states of the one species model and γ → 0 limit of the two
species model; in particular, there remain an infinite number of second class particles near
one or both boundaries of the two species system. Note also that there is a discontinuity,
equal to γ , in the derivative of J1 with respect to α (β) on the I/II (I/III) boundary; one
might say that the order of the phase transition in J1 when γ �= 0 differs from that when
γ = 0.

The macroscopic density profiles ρa(x) in the NESS, a = 0,1,2, defined by

ρa(x) = lim
L→∞,n/L→γ,i/L→x

〈ηa(i)〉, 0 ≤ x ≤ 1, (1.3)

with 〈·〉 the expected value in the NESS, have been computed in [2]; the results are summa-
rized in Table 1 (but see Remark 1.1 below). Knowing any two of these densities determines
the third, via

∑
a ρa(x) = 1. In fact, knowing ρ1(x) for all x and all values of α and β

determines ρ0(x), from the particle-hole symmetry, and hence all profiles, but for clarity
we give in Table 1 both ρ1(x) and ρ0(x). In region II the system divides itself into two
parts, x < x0 and x > x0, with different formulas for ρ0(x); similarly in region III there are

Table 1 Density profiles in different regions of the phase plane. Note that x0 is defined only in region II and
on its boundaries, and x1 only in region III and on its boundaries

Region ρ1(x) ρ0(x)

I αc αc

I/II boundary αc αc

I/III boundary αc αc

x < x1 x > x1 x < x0 x > x0

II α 1 − α α

III β 1 − β β

II/III boundary (Shock Line) α(= β) linear linear α(= β)
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different formulas for ρ1(x) for x < x1 and x > x1. Here

x0 = 1 − γ

1 − 2α
, α ≤ β, α < αc;

x1 = γ

1 − 2β
, β ≤ α, β < αc.

(1.4)

On the II/III boundary α = β < αc , the shock line, the profiles include linear regions:

ρ0(x) =
{ x0−x

x0
(1 − α) + x

x0
α, 0 ≤ x ≤ x0,

α, x0 ≤ x ≤ 1

ρ1(x) =
{

α, 0 ≤ x ≤ x1,
1−x
1−x1

α + x−x1
1−x1

(1 − α), x1 ≤ x ≤ 1.

(1.5)

These arise from averaging over the position of a shock, as in the one species TASEP; further
discussion is given below.

Remark 1.1

(a) The density values ρa(x) at the boundaries x = 0,1 and at the fixed shocks x = x0, x1

may depend the way the limit (1.3) is taken. The boundary cases x = 0,1 were discussed
in [2] except on the I/II and I/III boundaries. We discuss the limits at x0, x1 in Sects. 5
and 6; this gives some further information about limits at the boundaries since x0 = 0
and x1 = 1 on the I/II and I/III boundaries, respectively.

(b) In the one-component model the phase plane regions corresponding to I, II, and III are
called the maximum current, low density, and high density regions, respectively. We do
not adopt that terminology here since in region III the particle density is low for x < x1.

Some typical profiles, obtained from simulations, are shown in Fig. 2. Since these are
from a finite system, they do not coincide perfectly with the description in Table 1: there are
boundary effects, and the density transitions in regions II and III, at x1 and x0 respectively,
have nonzero width of order

√
L. This is related to the nonuniqueness of the limit (1.3) at

these points, as mentioned above, and is discussed in Sect. 5.
We now give an intuitive discussion of some of the phenomena that give rise to these pro-

files. Consider a macroscopically uniform portion of our system in the limit L → ∞, with
densities of holes, particles and second class particles denoted by ρ0, ρ1 and ρ2, respectively,
where ρ0 +ρ1 +ρ2 = 1. In such a region the measure will be the known translation invariant
measure, with these densities, for the two species TASEP (see [9, 16, 17] and the discussion
in Sect. 8); in this measure (which is not a product measure) the first class particles con-
sidered separately, and the holes considered separately, are distributed according to product
measures, so that J1 = ρ1(1 − ρ1) and J0 = −ρ0(1 − ρ0). Thus from J0 = −J1 it follows
that in any uniform stretch of the NESS either

ρ1 = ρ0 = (1 − ρ2)/2 or ρ2 = 0, ρ1 = 1 − ρ0. (1.6)

This fact, which may be seen in the results of [2], is key to understanding the gross structure
of the densities in different regions of the phase diagram.

These density profiles differ from those the single-species open TASEP in two notable
ways: in regions II and III the density profiles have a point of discontinuity, and on the II/III
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Fig. 2 Density profiles in a system with L = 1000

boundary the linear region occupies only part of the system. These and other properties can
be understood in terms of the occurrence of a fat shock. By this term we refer, not to a broad-
ening of the sharp shock usually seen in the TASEP (as can occur in the partially asymmetric
model [18]), but rather to a macroscopically uniform interval which contains all the second-
class particles, and thus conforms to the first alternative in (1.6). We may think of this fat
shock as bounded by shocks of the usual sort occurring in two different one species TASEP
systems which are obtained by making appropriate identifications of second class particles
with either first class particles or holes. To see how this occurs, recall that if one either



1014 A. Ayyer et al.

Fig. 3 Shock interpretation at
α = β < αc . Densities ρa(x) are
plotted against x, with the
convention that the height at x of
the region labeled with particle
type a is ρa(x). For example, the
density of second class particles
in the shock region is
(1 − α) − α = 1 − 2α and the
density of holes to the left of the
shock is 1 − α. The fat shock
may in fact be located anywhere
in the system

identifies first and second class particles by coloring holes black and both kinds of particles
white, or else identifies second-class particles and holes by coloring these species red and
first-class particles blue, then the black/white particles, as well as the red/blue particles, form
standard two species TASEPs in the bulk. The dynamics at the boundaries is different, since
some white “particles” or red “holes” will be trapped in the system. A careful justification
of the conclusions below is given in Sects. 4 and 5.

Consider now the behavior of the system on the boundary of regions II and III (the shock
line). Then by previous analysis, see e.g. [10], one knows that a typical profile for the one
species model contains a shock between a region of density α on the left and 1 − α on the
right; the shock position has mean velocity zero and its (fluctuating) position is uniformly
distributed over the system. We see this same behavior for both the black/white and red/blue
systems described above, with the black/white shock necessarily located to the left of the
red/blue one. The typical profile at any given time looks on the macroscopic scale like Fig. 3,
where the convention is that at any point x the height of the region labeled with particle type
a is ρa(x).

Clearly both shock fronts have mean velocity zero and are trapped in the system, and
since the total number of second-class particles is γL, the macroscopic width w of the fat
shock must satisfy w = γ /(1−2α). This forces the two shock fronts to move (i.e., fluctuate)
in collusion so as to keep the macroscopic shock width fixed; we expect this fluctuation, as
for the shock in the single component TASEP on its shock line, to be on a diffusive time
scale growing as L2. The density profiles ρa(x) arise as averages over the shock position,
and this gives rise to the linear profiles (1.5); in contrast to the situation in the one species
case, however, here they occupy only part of the system because the shock can fluctuate
only over an interval of width 1 − w. The shock fluctuation is also reflected in the structure
of the local measures obtained in the limit L → ∞, which are superpositions of states with
different densities (see Sect. 5). The critical value of α occurs when the fat shock fills the
system, i.e., when w = 1, from which we regain (1.2).

The situation in regions II and III is similar. The fat shock width is in general

w(α,β, γ ) = γ

1 − 2α ∧ β
, (1.7)

where α∧β = min{α,β}; in region II the shock is pinned to the right boundary, and in region
III is pinned to the left boundary. Since the shock is fixed it gives rise to discontinuities in
the density profiles; see Fig. 2 as well as the discussion of a related model, where similar
behavior occurs, in Sect. 8 (Fig. 4). There is no corresponding discontinuity in the single-
species TASEP (γ = 0) because in that case there is a single shock of zero macroscopic
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width. In region I, w as given in (1.7) is greater than 1 and the fat shock fills the system; the
density profiles are uniform and conform to the first alternative of (1.6).

The outline of the rest of the paper is as follows. In Sect. 2 we discuss the matrix method
for this system. We use a different representation of the matrices from that of [2], which
makes it easier to prove certain features of the NESS discussed later. In Sect. 3 we show that
the marginal distribution induced by the NESS on particles in the first n states of the system,
and on holes in the last n, is exchangeable, i.e., that the probability of finding r first class
particles (holes) on some specified set of r sites among the first (last) n is independent of
the choice of sites. In Sect. 4 we establish the fat shock picture described above. In Sect. 5
determine the local measures, in the bulk, for the infinite volume limit of the system, and
in Sect. 6 consider the local measures near the boundaries, focusing on a Bernoulli property
which is a consequence of the exchangeability established in Sect. 3. In Sect. 7 we show that
the second class particles form an equilibrium system, most simply described by a pressure
ensemble. This is related, in our case, to the fact that the current of second class particles is
zero. For similar situations, see [19, 20].

In Sect. 8 we make some concluding remarks and, in particular, describe some closely
related models. One such model is a generalization of the standard “defect particle” model;
another describes a system of first class particles, second class particles, and holes on a
ring with one semi-permeable bond which second class particles cannot cross. Several more
technical remarks are recorded in the appendices.

2 The Matrix Ansatz

The stochastic system described in Sect. 1 is ergodic in finite volume L and thus there exists
a unique invariant measure μ

α,β

L,n on the configuration space

YL,n ≡ {(τ1, . . . , τL) | τi = 0,1,2; τi = 2 for n values of i}, (2.1)

where from now on we will assume that 0 < n < L. This measure may be obtained from
a matrix ansatz [2], combining the matrix algebra of [9] (which discussed the system with
the same constituents as in the current work, but on a ring) with the treatment of the one
species open system via matrix-elements from [7]. One introduces matrices X0, X1, and X2

and vectors |Vβ〉 and 〈Wα| which satisfy

X1X0 = X1 + X0, X1X2 = X2, X2X0 = X2, (2.2)

〈Wα|X0 = 1

α
〈Wα|, X1|Vβ〉 = 1

β
|Vβ〉. (2.3)

Then for a configuration τ = (τ1, . . . , τL) ∈ YL,n the probability of τ in the invariant measure
is

〈τ 〉
μ

α,β
L,n

= Zα,β(L,n)−1〈Wα|Xτ1 · · ·XτL |Vβ〉, (2.4)

where Zα,β(L,n) is the normalization factor

Zα,β(L,n) =
∑

τ∈YL,n

〈Wα|Xτ1 · · ·XτL |Vβ〉, (2.5)
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which, with a slight misuse of the nomenclature of equilibrium statistical mechanics, we
call the partition function. We will frequently omit superscripts such as α,β in (2.5) when
no confusion can arise.

We will work throughout in a realization of (2.2)–(2.3) for which the matrices and vectors
have the properties

X2 = X1X0 − X0X1 = |V1〉〈W1|, X2|Vβ〉 = |V1〉, 〈Wα|X2 = 〈W1|, (2.6)

〈Wα|V1〉 = 〈W1|Vβ〉 = 1 for all α,β, (2.7)

where |V1〉 and 〈W1| are vectors satisfying (2.3). Note that X2 is then a one-dimensional
projection operator. The realization is given in Appendix A, but we will need no conse-
quences beyond (2.6) and (2.7). Because of (2.7) we make the convention that Zα,1(0,0) =
Z1,β(0,0) = 1.

Remark 2.1 The nature of X2 in this representation shows that certain distributions obtained
from (2.4) factorize. Let Q1, . . . ,Qn denote the (random) positions of the second class par-
ticles in the system (note that these can be ordered once and for all). Then the probability
that the j th

1 , j th
2 , . . . , j th

m second class particles are located on sites qj1 , . . . , qjm is

μ
α,β

L,n(Qji = qji , i = 1, . . . ,m)

= Zα,β(L,n)−1Zα,1(qj1 − 1, j1 − 1)

×
m∏

i=2

Z1,1(qji − qji−1 − 1, ji − ji−1 − 1)Z1,β(L − qjm, n − jm). (2.8)

Moreover, if we condition on the event that Qj = q , i.e., that the j th second class particle is
located at site q , then the conditional measure is a product of the measures associated with
the sites before and after j , so that if τ is a configuration consistent with this event then

μ
α,β

L,n(τ1, . . . , τL | Qj = q) = μ
α,1
q−1,j−1(τ1, . . . , τq−1)μ

1,β

L−q,n−j (τq+1, . . . , τL). (2.9)

A factorization property of this type is also known for the translation invariant measures for
the two species TASEP [9, 17]. Similar expressions are easily obtained when conditioning
on the presence of several specified second class particles at specified sites. We will use
(2.8) and (2.9) in Sects. 4 and 5, when we discuss the fat shock and describe local measures
in the NESS.

3 Exchangeability of Measures

In this section we demonstrate a remarkable property of the finite-volume NESS with n

second class particles: the exchangeability [21] of the measure on first class particles within
the first n sites, or equivalently on holes in the last n sites. Specifically, this means that for
any r ≤ n the probability of finding first class particles on the r sites 1 ≤ i1 < i2 < . . . < ir ≤
n depends only on r , i.e., is independent of the choice of positions i1, i2, . . . , ir . When r = 1
this is implicit in (38) of [2], although it is not emphasized. As a consequence of the ideas
of the proof we will also obtain, for any i, j with i, j ≥ 1 and i + j − 1 ≤ L, the probability
of finding a block of j consecutive first class particles starting at site i; this generalizes the
density formula of [2], which corresponds to j = 1.
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The key quantity for our arguments is the probability of finding (first class) particles
at sites i1, . . . , ir−1 together with a block of j particles starting at site ir , where r ≥ 1,
i1 < · · · < ir−1, and ir > ir−1 + 1; we allow j = 0, with the interpretation that in this case
there is no restriction on what happens at site ir or any succeeding sites. Thus the probability
in question is Z(L,n)−1Er(L,n; i1, . . . , ir; j), where Er is a sum of weights for certain
configurations τ ∈ YL,n:

Er(L,n; i1, . . . , ir; j) =
∑

τi1 =...=τir−1 =1 if r≥2
τir =τir +1=...=τir +j−1=1 if j≥1

〈Wα|Xτ1 . . .XτL |Vβ〉. (3.1)

In (3.1) we must have ir + j − 1 ≤ L, since there are only L sites, and r + j − 1 ≤ L −
n, since there are n second class particles. For certain parts of the analysis we will have
to consider separately two cases, in which these two inequalities respectively provide the
effective bounds on j :

Case 1: ir ≥ n + r , so that 0 ≤ j ≤ L − ir + 1;
Case 2: ir ≤ n + r − 1, so that 0 ≤ j ≤ L − n − r + 1.

We will analyze the Er using a simple recursion:

Er(L,n; i1, . . . , ir; j) = Er(L,n; i1, . . . , ir; j + 1) + Er(L − 1, n; i1, . . . , ir; j − 1). (3.2)

This holds whenever all terms are defined, which requires that j be positive and satisfy j ≤
L− ir in Case 1 and j ≤ L−n−r in Case 2. To derive (3.2) we consider the value of τir+j in
each term of the sum (3.1). Terms with τi+j = 1 sum precisely to Er(L,n; i1, . . . , ir ; j + 1),
and for terms with τi+j = 0 or τi+j = 2 we use the matrix algebra to reduce

Xτir +j−1Xτir+j
=
{

X1X0 = X1 + X0, if τir+j = 0,

X1X2 = X2, if τir+j = 2;
(3.3)

the resulting sum is just Er(L − 1, n; i1, . . . , ir ; j − 1).
To determine the Er the recursion (3.2) must be supplemented by boundary conditions

at the maximum and minimum values of j . When j = 0, (3.1) gives

Er(L,n; i1, . . . , ir ;0) =
{

Er−1(L,n; i1, . . . , ir−1;1), if r ≥ 2,

Z(L,n), if r = 1.
(3.4)

The value of Er for j maximal is case dependent. In Case 1, if j takes its maximum possible
value L − ir + 1 then each matrix product in (3.1) ends with X

L−ir+1
1 |Vβ〉 = β−(L−ir+1)|Vβ〉,

so that

Er(L,n; i1, . . . , ir;L − ir + 1)

=
{

β−(L−ir+1)Er−1(ir − 1, n; i1, . . . , ir−1;1), if r ≥ 2,

β−(L−ir+1)Z(ir − 1, n), if r = 1,
(Case 1). (3.5)

In Case 2, if j takes its maximum possible value L − n − r + 1 then the rightmost factor
in the matrix product in (3.1) is X2 and there are no factors of X0; using the matrix algebra
relations X1X2 = X2, X2

2 = X2 and X2|Vβ〉 = |V1〉, we have that

Er(L,n; i1, . . . , ir ;L − n − r + 1) = 1 (Case 2). (3.6)
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Lemma 3.1 The recursion (3.2), together with the boundary conditions (3.4) and either
(3.5) or (3.6), determines Er(L,n; i1, . . . , ir ; j) by an inductive computation.

Proof The primary induction is on increasing values of r , with n held fixed throughout. The
inductive assumption that the Er−1 are known is needed when (3.4) or (3.5) is applied, and
since for r = 1 the right hand side of these equations is a (known) partition function one
may treat all values r ≥ 1 uniformly. Then for fixed r (r ≥ 1) and i1, . . . , ir we induce on
increasing values of L: for the minimum possible value, L = ir , we must be in Case 1 and
have j = 0 or j = 1, so that all Er(L,n; i1, . . . , ir; j) are determined by (3.4) and (3.5). For
any larger value of L either (3.5) or (3.6) determines Er(L,n; i1, . . . , ir; j) for the maximum
possible value of j and we may then induce downward on j using (3.2). �

We can now verify exchangeability; we show that Er(L,n; i1, . . . , ir; j) is equal to the
corresponding weight with the sites i1, . . . , ir in standard positions 1, . . . , r .

Theorem 3.2 Let 1 ≤ i1 < i2 < . . . < ir be sites such that ir ≤ n + r − 1, and let j be an
integer less than or equal to L − n − r + 1. Then

Er(L,n; i1, . . . , ir ; j) = E1(L,n;1; r + j − 1). (3.7)

Proof The proof is by induction on r . By Lemma 3.1 it suffices to show that E1(L,n;1; r +
j − 1) satisfies the same recurrence relation (3.2) and boundary conditions (3.4), (3.6) as
does Er(L,n; i1, . . . , ir ; j). This follows immediately from the corresponding relations for
E1 and, for r ≥ 2, the induction assumption. �

We finally give the explicit formula for E1 which, by (3.7), also provides a formula for
Er(L,n; i1, . . . , ir; j) when ir ≤ n + r − 1. This result will not be needed in the remainder
of the paper.

The formula involves the Catalan triangle numbers [22]

Cm
n =

(
m + n

n

)
m − n + 1

m + 1
, (3.8)

which satisfy the recursion

Cm−1
n + Cm

n−1 = Cm
n (3.9)

and the boundary conditions

Cm
−1 = 0, Cm

0 = 1, Cm
m = Cm

m−1 = 1

m + 1

(
2m

m

)

. (3.10)

We then define the additional constants

cj,k =
{

Ck−1
k−j , if j ≥ 1,

δk,0, if j = 0;
(3.11)

dm,j,k =
{(

m−j+k

k

)− (m−j+k

k−j

)
, if j ≤ m,

δk,0, if j = m + 1.
(3.12)

In (3.11)–(3.12) the convention is that
(
p

q

)= 0 for integer p,q with p ≥ 0, q < 0.
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Theorem 3.3 Case 1: If n + 1 ≤ i ≤ L and 0 ≤ j ≤ L + 1 − i then

E1(L,n; i; j) =
L−i∑

k=j

cj,kZ(L − k,n) + Z(i − 1, n)

L−i−1∑

k=0

dL−i,j,kβ
−L+i+k−1. (3.13)

Case 2: If 1 ≤ i ≤ n and 0 ≤ j ≤ L − n then

E1(L,n; i; j) =
L−n∑

k=j

cj,kZ(L − k,n), (3.14)

Proof Case 1: We temporarily denote the right hand side of (3.13) by F(L,n; i; j). By
Lemma 3.1 it suffices to verify that F satisfies relations corresponding to (3.4), (3.5),
and (3.2). It will be convenient to denote the two terms in (3.13) by F1(L,n; i; j) and
F2(L,n; i; j), respectively.

Since dL−i,0,k = 0 and c0,k = δk,0 we have immediately that F(L,n; i;0) = Z(L,n)

(compare (3.4)). Moreover, the sum defining F1(L,n; i;L − i + 1) is empty and so from
dL−i,L−i+1,k = δk,0 we have F(L,n; i;L − i + 1) = β−L+i−1Z(i − 1, n) (compare (3.5)).
It remains to check the equivalent of (3.2), which we shall show is satisfied by F1 and F2

separately; recall that in (3.2), 1 ≤ j ≤ L − i. For j ≥ 2,

F1(L,n; i; j + 1) + F1(L − 1, n; i; j − 1)

=
L−i∑

k=j+1

Ck−1
k−j−1Z(L − k,n) +

L−1−i∑

k=j−1

Ck−1
k−j+1Z(L − 1 − k,n)

=
L−i∑

k=j

(
Ck−1

k−j−1 + Ck−2
k−j

)
Z(L − k,n) = F1(L,n; i; j), (3.15)

where we have used C
j−1
−1 = 0 (see (3.10)) and Ck−1

k−j−1 + Ck−2
k−j = Ck−1

k−j (see (3.9)). The case
j = 1 is easily checked separately. Similarly one verifies that

F2(L,n; i; j + 1) + F2(L − 1, n; i; j − 1) = F2(L,n; i; j) (3.16)

separately for j ≤ L − i − 1 and for j = L − i.
Case 2: We denote the right hand side of (3.14) by G(L,n; i; j), and show that G sat-
isfies the appropriate boundary conditions and recursion. One checks immediately that
G(L,n; i;0) = Z(L,n) (compare (3.4)) and, using (3.10), that G(L,n; i;L−n) = 1 (com-
pare (3.6)). Finally one shows that, for 1 ≤ j ≤ L − n − 1,

G(L,n; i; j + 1) + G(L − 1, n; i; j − 1) = G(L,n; i; j); (3.17)

the proof is essentially the same as that of the recursion for F1 in Case 1. �

4 The Fat Shock

In this section we give a precise definition and analysis of the fat shock discussed informally
in the introduction. The analysis will be used in the next section for the determination of
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local states in the infinite volume limit. We define the fat shock microscopically as the region
between the positions Q1 and Qn of the first and last second class particles in the system.

The joint distribution of Q1 and Qn was obtained in Remark 2.1; it is convenient here to
write this, for j, k, l ≥ 0, as

θ
α,β

L,n (j, k, l) ≡ μ
α,β

L,n(Q1 = j + 1,Qn = j + k + 2)δj+k+l,L−2

= Zα,1(j,0)Z1,1(k, n − 2)Z1,β(l,0)

Zα,β(L,n)
δj+k+l,L−2. (4.1)

We can determine the large-L behavior of θ by replacing the partition functions in (4.1)
with their asymptotic forms; these can be obtained from [7] and [2], and are summarized
in Appendix B. In some cases it is convenient to further approximate the distribution of
k, which represents the fat shock width on the microscopic scale, by a Gaussian. (Re-
call that a macroscopic width w = w(α,β, γ ) for the fat shock was predicted on heuris-
tic grounds in Sect. 1 (see (1.7)), so we expect that k ∼ wL for large L.) We omit de-
tails of the computations and summarize the results in the next remark, where the notation
θ

α,β

L,n (j, k, l) ∼ f (α,β, γ, j, k, l) indicates that the ratio of the two quantities approaches 1
as L → ∞ with n = �γL�, where �u� is the greatest integer contained in u.

Remark 4.1 (a) On the boundary of regions II and III (α = β < αc),

θ
α,α
L,n(j, k, l) ∼ 1

L(1 − w)

√
A(α)

πL
e−A(α)(k−Lw)2/Lδj+k+l,L−2, (4.2)

where A(α) = (1 − 2α)3/(4γα(1 − α)). That is, under θ
α,α
L,n(j, k, l), k is approximately

Gaussian with mean Lw and variance of order L, j is approximately uniformly distributed
on the range 0 ≤ j ≤ L − l − 2, and l = L − 2 − j − k. On the macroscopic scale, this
means that the width of the fat shock is w and its left endpoint is uniformly distributed on
the interval [0,1 − w].
(b) In region II (α < αc,α < β),

θ
α,β

L,n (j, k, l) ∼ pα(1−α),β(l)

√
A(α)

πL
e−A(α)(k−Lw)2/Lδj+k+l,L−2, (4.3)

where we have introduced the (normalized) probability distribution

pu,β(l) = β(1 + √
1 − 4u) − 2u

2β
ulZβ,1(l,0), l = 0,1, . . . , (4.4)

defined for u < β(1 −β) if β ≤ 1/2, u ≤ 1/4 otherwise. pu,β(l) decreases exponentially for
large l unless u = 1/4, when the decrease is as l−3/2 (see (B.1)); p is normalized by (B.2).
Thus on the microscopic scale l is typically of order 1 and the shock width k is distributed
as in (a). On the macroscopic scale the fat shock has width w and is pinned to the right end
of the system. The analysis in region III is similar.
(c) On the boundary of regions I and II (αc = α < β),

θ
α,β

L,n (j, k, l) ∼ pα(1−α),β(l)2

√
A(α)

πL
e−A(α)(k−L)2/Lδj+k+l,L−2. (4.5)
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This is as in (b) except that here w = 1 and as a result k is distributed as a Gaussian random
variable conditioned to have value at most equal to its mean, and there is a corresponding
factor of 2 in the normalization. The analysis on the I/III boundary is similar.
(d) At the triple point (αc = α = β),

θ
α,β

L,n (j, k, l) ∼ 2γ 2

L(1 − γ )2
e−A(α)(k−L)2/Lδj+k+l,L−2. (4.6)

The distribution of k is as in (c) but here j and l are free, subject only to the constraint
j + l = L − 2 − k.
(e) In region I (αc < α,β),

θ
α,β

L,n (j, k, l) ∼ p(1−γ 2)/4,α(j)p(1−γ 2)/4,β(l)δj+k+l,L−2; (4.7)

j and l are both of order 1 (microscopically) and k is determined by the delta function
constraint.
Note that the results of Remark 4.1 confirm the picture of the fat shock behavior sketched in
Sect. 1.

5 Local States in the Infinite Volume Limit in the Bulk

In this section we discuss a question inspired by the treatment of the one component system
by Liggett [10]: is there a local state, in the infinite volume limit, at the scaled position
x ∈ [0,1] (that is, near site i = �xL�, with L → ∞), and if so what is it? Informally, the
local state of the system at position x is the state observed by zooming in on that position
and letting the size of the system approach infinity.

To formulate a precise question we consider a limit in which n and i increase with L in
such a way that i → ∞, L− i → ∞, i/L → x ∈ [0,1], and n/L → γ ∈ (0,1). In this setting
we ask about the existence and nature of the weak limit limL→∞ T −iμ

α,β

L,n, where T is trans-
lation by one lattice site and so the operator T −i carries site i to the origin; equivalently, we
consider the sites of our open system to run from 1 − i to L − i and look at the probabilities
of configurations in the interval from −K to K , take L, i, L − i, and n to infinity as above,
and then make K arbitrary. The limit (if it exists) is a measure on the configuration space
Y = {0,1,2}Z; we call it a local state in the bulk since (in the L → ∞ limit) it describes a
situation infinitely far from each boundary; the local state at the boundary will be discussed
in Sect. 6.

It will suffice to consider a special class of these limiting procedures; specifically, we
will always take

n = nL = �γL� and i = iL = �xL� + c
√

L; (5.1)

we must assume that c > 0 if x = 0 and c < 0 if x = 1. We then define

μx,c ≡ lim
L→∞

T −iLμ
α,β

L,nL
. (5.2)

The limit in (5.2) certainly exists along subsequences, by the compactness of the set of
measures on Y . To simplify notation we will ignore the necessity of passing to subsequences;
since the limiting measure will be found to be unique, the limit of the sequence itself must
also exist. For most values of the parameters the limit will in fact be independent of the
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choice of c, but this is not true when x = x0 in region II or on the I/II boundary, or x = x1 in
region III or on the I/III boundary.

We first consider the currents and densities in the state μx,c. The currents in the finite
system, and hence also in the limit, are independent of the site:

〈η1(j)(1 − η1(j + 1))〉μx,c
= 〈(1 − η0(j − 1))η0(j)〉μx,c

= J1 (5.3)

for any j , with J1 given in (1.1). The limiting densities ρa(x, c) for a = 0,1,2 are defined
by

ρa(x, c) = lim
L→∞

〈ηa(iL)〉
μ

α,β
L,nL

= 〈ηa(0)〉μx,c
, (5.4)

with the last equality expressing the fact that iL corresponds to the origin in μx,c. It is easy to
check, from the asymptotic computations of [2], that the limit in (5.4) would be unchanged
if iL were replaced by iL + j for any fixed j , which implies that 〈ηa(j)〉μx,c

= ρa(x, c) for
any j , i.e., the densities under μx,c are translation invariant. Equation (5.4) may be viewed
as a refined version of (1.3), in which the ambiguity in the L → ∞ limit there has been
removed.

Noting that in the L → ∞ limit the generator of the dynamics in the neighborhood of
iL does not involve any boundary terms or any constraints on the densities of the three
species beyond

∑
a ηa(j) = 1, one verifies easily [10] that μx,c must be invariant for the

infinite-volume two species TASEP dynamics. It then follows that μx,c must be a convex
combination of the extremal invariant measures for the infinite volume two species TASEP.
These measures have been classified in [16]: there is (i) a family of translation invariant
measures νλ0,λ1 , defined for λ0, λ1 ≥ 0, λ0 +λ1 ≤ 1, in which holes, first class particles, and
second class particles have densities λ0, λ1, and 1 − λ0 − λ1, respectively, and (ii) a family
of non-translation-invariant “blocking” measures ν̂m,n, where m,n ∈ Z ∪ {−∞,∞}, m ≤ n,
and m,n are not both infinite: ν̂m,n is a unit point mass on the configuration τm,n given by

τ
m,n
i =

⎧
⎨

⎩

0, if i < m,

2, if m ≤ i < n,

1, if n ≤ i.

(5.5)

However, the translation invariance of the densities implies that none of the blocking mea-
sures can be present in the superposition giving μx,c.

Thus there exists a probability measure κx,c(dλ0, dλ1) (which depends also on α, β , and
γ ) that specifies the weights of the different translation invariant extremal measures which
enter into the superposition:

μx,c =
∫

λ0,λ1≥0, λ0+λ1≤1
κx,c(dλ0, dλ1)ν

λ0,λ1 . (5.6)

We will see that: (i) for most values of the parameters, κx,c is a point mass, so that μx,c

is one of the measures νλ0,λ1 , (ii) in some cases, in which x may lie to the left of, within,
or to the right of the fat shock discussed in the introduction, μx,c is a superposition of the
two or three measures corresponding to these possibilities, and (iii) no more complicated
superposition can occur. Note that, as a consequence, the current J1 is the same for all
elements of the superposition (and the same holds for J0 and for J2 = 0). Here is a first
result in this direction.
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Theorem 5.1 If μx,c is defined by (5.2) and the current and densities at x are related by
J1 = ρ0(x, c)(1 − ρ0(x, c)) = ρ1(x, c)(1 − ρ1(x, c)), then μx,c = νρ0(x,c),ρ1(x,c).

The condition in the theorem that ρ0(x, c)(1 − ρ0(x, c)) = ρ1(x, c)(1 − ρ1(x, c)) corre-
sponds to the zero current of second class particles and leads to the alternatives of (1.6). We
see from Table 1 that this theorem determines μx,c completely for most but not all values of
α, β , γ , x, and c and that the results are consistent with the intuitive picture sketched in the
introduction. In summary:

Remark 5.2 It follows from Theorem 5.1 that:
(a) In region I the local state μx,c is ναc,αc ; in particular, it is independent of x and c.
(b) In region II the local state μx,c is ν1−α,α for x < x0 and να,α for x > x0, i.e., respectively
outside and inside the fat shock. Region III is similar: the local state is νβ,β for x < x1 and
νβ,1−β for x > x1.
Other cases are not determined by the theorem:
(c) The local state is not determined by Theorem 5.1 in the interior of the regions where
either type 2 or type 0 particles have a linear profile, that is, on the II/III boundary (where the
fat shock is not pinned to one or the other end of the system) with 0 < x < x0 or 1 > x > x1.
See Fig. 2(c, d).
(d) The local state is not determined by Theorem 5.1 (i) at x = x0 in region II and on the I/II
boundary, where x0 = 0; (ii) at x = x1 in region III and on the I/III boundary, where x1 = 1,
or (iii) at x = x0 = 0 and x = x1 = 1 at the triple point. All of these points are edges of the
(pinned) fat shock; see Fig. 2(a, b, e).
We will determine μx,c in cases (c) and (d) below.

Proof of Theorem 5.1 Using (5.6) together with the relations 〈η1(i)〉νλ0,λ1 = λ1,
〈η1(i)(1 − η1(i + 1))〉νλ0,λ1 = λ1(1−λ1) (which hold for all i because the marginal of νλ0,λ1

on configurations of first class particles is a product measure), we find that

ρ1(x, c) = 〈η1(i)〉μx,c
=
∫

λ1κx,c(dλ0, dλ1) = 〈λ1〉κx,c
, (5.7)

and

J1 = 〈η1(i)(1 − η1(i + 1))〉μx,c

=
∫

λ1(1 − λ1)κx,c(dλ0, dλ1) = 〈λ1(1 − λ1)〉κx,c
. (5.8)

From J1 = ρ1(x, c)(1−ρ1(x, c)), then, we see that
〈
λ2

1

〉

κx,c
= 〈λ1〉2

κx,c
, so that λ1 = 〈λ1〉κx,c

=
ρ1(x, c) almost surely with respect to κx,c. Similarly, λ0 = ρ0(x, c) almost surely with re-
spect to κx,c , so that μx,c = νρ0(x,c),ρ1(x,c). �

We now turn to the determination of the local measure μx,c at a point x where the densi-
ties are varying linearly or are discontinuous—case (c) or (d) of Remark 5.2. Recall that in
Sect. 4 we have determined the probability θ

α,β

L,n (j, k, l) that Q1 = j +1 and Qn = j +k +2,
where j +k+ l = L−2 and Q1 and Qn are the position of the first and last second class par-
ticles. Now let μ

α,β

L,n,j,k,l denote the measure μ
α,β

L,n conditioned on Q1 = j +1, Qn = j +k+2.
The key observation we will use follows from Remark 2.1, specifically, from (2.9) or a sim-
ple generalization thereof: if G is a function on YL,n which depends on the τi only for
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m0 ≤ i ≤ m1, then

〈G〉
μ

α,β
L,n,j,k,l

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈G〉
μ

α,1
j,0

, if m1 ≤ j ,
〈
T −j−1G

〉

μ
1,1
k,n−2

, if j + 2 ≤ m0,m1 ≤ i + k + 1,
〈
T −j−k−2G

〉

μ
1,β
l,0

, if j + k + 3 ≤ m0.

(5.9)

Now let (rL) be a sequence of integers with rL → ∞ and rL/
√

L → 0. For any function
F on Y depending only on finitely many spins we may write

〈F 〉μx,c
= lim

L→∞

∑

j+k+l=L−2

θ
α,β

L,nL
(j, k, l)

〈
T iLF

〉

μ
α,β
L,nL,j,k,l

= lim
L→∞

[
�

(1)
L 〈F 〉

μ
(1)
L

+ �
(2)
L 〈F 〉

μ
(2)
L

+ �
(3)
L 〈F 〉

μ
(3)
L

+ remainder
]
. (5.10)

Here μ
(p)

L is for p = 1,2,3 the probability measure defined by

μ
(p)

L = �
(p)

L

−1∑

j,k,l

(p)

θ
α,β

L,nL
(j, k, l)T −iLμ

α,β

L,nL,j,k,l , (5.11)

where
∑(1)

j,k,l ranges over values satisfying j > iL + rL,
∑(2)

j,k,l over j < iL − rL and k >

iL + rL,
∑(3)

j,k,l over k < iL − rL, and

�
(p)

L =
∑

j,k,l

(p)

θ
α,β

L,nL
(j, k, l) =

⎧
⎪⎪⎨

⎪⎪⎩

μ
α,β

n,L(Q1 > iL + rL), if p = 1,

μ
α,β

n,L(Q1 < iL − rL,Qn > iL + rL), if p = 2,

μ
α,β

n,L(Qn < IL − rL), if p = 3.

(5.12)

The remainder in (5.11) contains those terms from the full sum over i and k which are
omitted from

∑(1),
∑(2), and

∑(3). We have suppressed the dependence of these various
entities on α, β , γ , x, and c.

We now take the L → ∞ limit in (5.10). It follows from Remark 4.1 and the fact that rL

grows more slowly than
√

L that the remainder vanishes in this limit. The �
(p)

L are ex-
pressed as probabilities in (5.12) and their limiting values �

(p)
x,c = limL→∞ �

(p)

L may be
determined from Remark 4.1; these limits will be discussed on a case by case basis be-
low.

Finally, to study limL→∞ μ
(p)

L we observe that for sufficiently large L (if F depends on
τi only for |i| ≤ m then rL > m suffices) we have by (5.9) that

〈F 〉
μ

(p)
L

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�
(1)
L

−1∑(1)

j,k,l θ
α,β

L,nL
(j, k, l)〈T iLF 〉

μ
α,1
j,0

, if p = 1,

�
(2)
L

−1∑(2)

j,k,l θ
α,β

L,nL
(j, k, l)〈T iL−j−1F 〉μ1,1

k,n−2, if p = 2,

�
(3)
L

−1∑(3)

j,k,l θ
α,β

L,nL
(j, k, l)〈T iL−j−k−2F 〉

μ
1,β
l,0

, if p = 3.

(5.13)

The limits limL→∞ μ
(p)

L for p = 1,2,3 are all treated similarly; let us discuss the case p = 2
in detail. Equation (5.13) displays μ

(2)
L as a convex combination of the probability measures

T −(iL−j−1)μ
1,1
k,n−2. Each of these measures, for large L, is by Remark 5.2(a) approximately

equal to να∧β,α∧β (recall that α ∧ β = min{α,β}), since the critical value α∗
c of α for a
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system with k � wL = γL/(1 − 2α ∧β) sites and n � γL second class particles—and thus
an effective value γ ∗ = n/k = 1 − 2α ∧ β of γ —is (1 − γ ∗)/2 = α ∧ β . The same should
be true of μ

(2)
L . The corresponding evaluations for p = 1,3 come from the results of [10] for

the local measures in the one species open system. We conclude that

lim
L→∞

μ
(p)

L =

⎧
⎪⎨

⎪⎩

ν1−α∧(1/2),α∧(1/2), if p = 1,

να∧β,α∧β, if p = 2,

νβ∧(1/2),1−β∧(1/2), if p = 3,

(5.14)

and so

μx,c = �(1)
x,cν

1−α∧(1/2),α∧(1/2) + �(2)
x,cν

α∧β,α∧β + �(3)
x,cν

β∧(1/2),1−β∧(1/2). (5.15)

Remark 5.3 The heuristic argument for (5.14) given above could be made precise by justi-
fying the implicit exchange of limits; we sketch instead an alternate proof, again for p = 2.
We know that the limiting current for the measures μ

1,1
k,n−2, as L and hence k � wL goes

to infinity, is α(1 − α), and the limiting densities of holes, particles, and second class par-
ticles are α, α, and 1 − 2α, respectively. One can in fact show further that these limits are
obtained with error which goes to zero uniformly at sites i satisfying rL ≤ i ≤ k − rL; from
this, it follows that the measures μ

(2)
L have the same limiting current and densities. Then an

argument as in the proof of Theorem 5.1 establishes (5.14).

To complete our discussion of the local states in the bulk we must supplement (5.15) with
a determination of the weights �

(p)
x,c ≡ limL→∞ �

(p)

L for cases (c) and (d) of Remark 5.2. The
cases in the next remark are parallel to those of Remark 4.1.

Remark 5.4 (a) On the boundary of regions II and III (the shock line, case (c) of Remark 5.2)
we find from Remark 4.1(a) and (5.13) that

�(p)
x,c = 1

1 − w
×
⎧
⎨

⎩

(1 − w − x)+, if p = 1,

1 − w − (1 − w − x)+ − (x − w)+, if p = 2,

(x − w)+, if p = 3.

(5.16)

Here u+ = u if u ≥ 0 and u+ = 0 if u < 0. Note that these coefficients, and hence the local
measure μx,c given by (5.15), are independent of c.
(b) In region II (α < αc,α < β), at the fixed shock x0, the �

(p)
x,c do depend on c:

�(1)
x0,c = 1 − �

(
c
√

A(α)
)

, �(2)
x0,c = �

(
c
√

A(α)
)

, �(3)
x0,c = 0. (5.17)

Here � is the error function defined by

�(t) = 1√
2π

∫ t

−∞
e−τ2/2dτ. (5.18)

The analysis in region III is similar.
(c) On the boundary of regions I and II (αc = α < β), where x0 = 0, we find that for c > 0,

�
(1)

0,c = 2 − 2�
(
c
√

A(α)
)

, �
(2)

0,c = 2�
(
c
√

A(α)
)

− 1, �
(3)

0,c = 0. (5.19)
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The analysis on the I/III boundary is similar: for c < 0,

�
(1)

1,c = 0, �
(2)

1,c = 1 − 2�
(
c
√

A(α)
)

, �
(3)

1,c = 2�
(
c
√

A(α)
)

. (5.20)

(d) At the triple point (αc = α = β), where x0 = 0 and x1 = 1, (5.19) and (5.20) again hold
(with c > 0 and c < 0 respectively).

We finally note that the results of this section yield density profiles as well as the finite
volume corrections to these profiles at the fixed shocks (see Remark 1.1(a)), since ρa(x, c)

may be calculated from (5.4) and (5.15). For example, on the II/III border (shock line) we
find in this way that

ρ0(x) = �(1)
x,c(1 −α)+ (�(2)

x,c +�(3)
x,c)α, ρ1(x) = (�(1)

x,c +�(2)
x,c)α +�(3)

x,c(1 −α), (5.21)

with the weights �(p) given by (5.16); it is easy to see that (5.21) reproduces (1.5). Here
we have used the notation ρa(x) of (1.3), rather than writing ρa(x, c) as in (5.4), since the
densities do not depend on c. In region II we have, from (5.15) and (5.16), that

ρ0(x0, c) = 1 − α − �
(
c
√

A(α)
)

(1 − 2α). (5.22)

Similar results hold in region III at the point x1.

6 Local States in the Infinite Volume Limit at the Boundaries

In this section we study limiting measures limL→∞ T −iLμ
α,β

L,nL
as in (5.2), still taking nL =

�γL� but now assuming that either iL or L − iL is fixed. Without loss of generality we can
assume that iL = 1 or iL = L (the measure as seen from site j or site L− j can be recovered
from these limits) and thus define

μleft ≡ lim
L→∞

T −1μ
α,β

L,�γL�, μright ≡ lim
L→∞

T −Lμ
α,β

L,�γL�. (6.1)

Note that μleft (respectively μright) does not coincide with any of the measures μ0,c , c > 0,
(respectively μ1,c , c < 0,) studied in Sect. 5. The densities under μleft and μright were studied
in [2]; for example, 〈ηa(j)〉μleft

is denoted ρa
left,j in [2].

By the particle hole symmetry it suffices to consider μleft, which is a measure on the
semi-infinite configuration space {0,1,2}{0,1,2,3,...}. In general we do not have a proof that
the limit defining μleft exists (except along subsequences), although we expect this to be
true; see also the comment below Theorem 6.1. The next result, however, gives a somewhat
surprising property which any (subsequence) limit must satisfy; to simplify notation, we will
speak as if the limit itself exists.

Theorem 6.1 The distribution of first class particles under the measure μleft is Bernoulli
with a constant density ρ, where ρ is given by

ρ =
⎧
⎨

⎩

αc, in region I,

α, in region II,

β, in region III.

(6.2)



On the Two Species Asymmetric Exclusion Process 1027

Proof By Theorem 3.2, we know that the (marginal) distribution of the variables η1(i) un-
der μleft is exchangeable, so that by de Finetti’s theorem [21] this distribution is a super-
position of Bernoulli distributions. From [2] we know that for any i ≥ 0, ρ ≡ 〈η1(i)〉μleft

=
limL→∞ 〈η1(i)〉μα,β

L,�γL�
is given by (6.2) and that limL→∞ 〈η1(i)(1 − η1(i + 1))〉

μ
α,β
L,�γL�

= J1

(see (1.1)). In each region of the phase plane these limits satisfy the relation J = ρ(1 − ρ).
Then from an argument as in the proof of Theorem 5.1 it follows that the η1(i) distribution
is the product measure νρ , where ρ is given by (6.2). �

Note that in region II the density of second class particles any finite distance from the left
boundary goes to zero as L → ∞ [2], so that knowing that the distribution of particles is
Bernoulli completely determines any limiting measure to be a Bernoulli measure on particles
and holes only. It follows that the limiting measure exists without passing to subsequences.

We discuss briefly one aspect of the measure μleft in the limit γ → 0 (note that we are
taking this limit after the L → ∞ limit). Consider first region I; from Remark 4.1(e) we see
that the position Q1 of the first second class particle in the system is distributed according to
p1/4,α(q1); this is a normalizable distribution which decreases as q

−3/2
1 for large q1, so that

there remains a second class particle in the system, but 〈Q1〉μleft
= ∞. In fact more is true; by

a calculation similar to that of Remark 4.1 one can show that all Qj − Qj−1, j = 2,3, . . . ,
have this same distribution (see also the discussion of the pressure ensemble in Sect. 7)
so that there remain an infinite number of second class particles in the system under μleft.
The same is true in Region III, but there by Remark 4.1(b) Q1 is distributed according to
pβ(1−β),α , so that 〈Q1〉μleft

< ∞; the distribution of the Qj −Qj−1, j = 2,3, . . . , is the same
as in Region I.

Remark 6.2 One may compare Theorem 6.1 with the result in [9] for the infinite volume
limit of a two-component TASEP system on a ring: that the distribution of first class particles
to the right of a second class particle, and that of holes to the left of such a particle, is
Bernoulli. The two results are closely related, because if we set α = β = 1 in the open
system then the matrix element 〈W1|Xτ1 · · ·XτL |V1〉 giving the weight of the configuration
τ1, . . . , τL is [9] exactly the weight of the configuration 2, τ1, . . . , τL on a ring. Because the
numbers of first class particles and of holes on the ring is fixed, and these numbers fluctuate
in the open system, this does not establish an exact equivalence of the α = β = 1 case of
Theorem 6.1 to the result of [9]; nevertheless, it is clear that the former is in some sense
a generalization of the latter to values of α and β other than 1. But the result of [9] is in
another sense more general than Theorem 6.1, since the infinite volume limit of the open
system has zero current of second class particles, but this is not true for the system of [9].

7 The Pressure Ensemble for Second Class Particles

We here consider the steady state distribution of the second class particles only, so that one
may think of identifying the first class particles and holes as a new type of hole. For d a
positive integer we define

φα(d) = − log(4−dZα,1(d − 1,0)) = − log(4−d〈W1|(X0 + X1)
d−1|V1〉). (7.1)

It follows from the (α,β) symmetry of Zα,β(L,n) that φβ(d) is also equal to
− log(4−dZ1,β(d − 1,0)). Using (2.8) we find that the probability that the n second class
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particles in the systems are located at sites q1 < q2 < · · · < qn is

μ
α,β

L,n(Q1 = q1, . . . ,Qn = qn)

= (4−LZα,β(L,n))−1e−φα(q1)−∑n
i=2 φ(qi−qi−1)−φβ(L−qn), (7.2)

where we have denoted φ1(d) by φ(d). The motivation for the factors 4−d in (7.1) will be
discussed below; with this normalization φ(d) ∼ (3/2) logd for d → ∞ [9, 17].

We note that (7.2) has precisely the form of the canonical distribution for a system in
a domain of length L with particles interacting with their nearest neighbor only via a pair
potential φ(d). (Such an interaction is rather unphysical; one may think of any intervening
particle as screening the interaction of particles that it separates.) There is also a potential
φα(d) (φβ(d)) representing the interaction of the first (last) particle with the left (right)
boundary.

The TASEP dynamics for the full system gives rise in a natural way to a dynamics on
the system of the second class particles which satisfies detailed balance with respect to this
equilibrium measure. In the state in which the second class particles are at q1, . . . , qn the
i th second class particle moves to site qi + 1 at rate 1 whenever that site is empty (in the
original sense), an event which by a simple generalization of (2.9) occurs in the NESS with
probability

〈W1|X0(X0 + X1)
qi+1−qi−2|V1〉

Z1,1(qi+1 − qi − 1,0)
= e−φ(qi+1−qi−1)

e−φ(qi+1−qi )
, if i < n, (7.3)

and with probability

〈W1|X0(X0 + X1)
L−qi−1|Vβ〉

Z1,β(L − qi,0)
= e−φβ(L−qi−1)

e−φβ(L−qi )
, if i = n. (7.4)

One finds similarly that the probability that the site qi −1 is occupied by a first class particle
is

e−φ(qi−qi−1−1)

e−φ(qi−qi−1)
, if i > 1,

e−φα(q1−1)

e−φα(qi )
, if i = 1. (7.5)

The dynamics in which qi → qi + 1 when qi+1 − qi ≥ 2, with rate given by (7.3), and
qi → qi − 1 when qi − qi−1 ≥ 2, with rate given by (7.5), is easily seen to satisfy detailed
balance with respect to the measure (7.2).

To obtain the properties of the system described by (7.2) in the thermodynamic limit,
L → ∞, n/L → γ , it is most convenient to consider the pressure or isobaric ensemble πα,β

p,n

[23, 24], in which instead of keeping the volume L of the system fixed we imagine that the
right wall is in contact with a reservoir of pressure p. The value of p can be chosen so as to
make the average volume equal to L, as discussed below. More precisely, we let the position
of the right boundary, which we denote qn+1, fluctuate, and add a term involving the pressure
p to the measure. This yields the probability distribution in the pressure ensemble:

πα,β
p,n (q1, . . . , qn, qn+1)

= Z α,β(p,n)−1 exp

(

−φα(q1) −
n∑

i=2

φ(qi − qi−1) − φβ(L − qn) − pqn+1

)

. (7.6)
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The partition function has the form Z α,β(p,n) = Z1(α,p)Z2(p)nZ1(β,p), where Z1 and
Z2 are readily found, for z = √

1 − e−p satisfying

1 ≥ z ≥ max{0,1 − 2α,1 − 2β}, (7.7)

to be given by

Z1(α,p) = α(1 − z)

z + 2α − 1
, Z2(p) = 1 − z

1 + z
. (7.8)

Thus (7.6) becomes

πα,β
p,n (q1, . . . , qn, qn+1)

= Z1(α,p)−1e−φα(q1)−pq1

[
n∏

i=2

Z2(p)−1e−φα(qi−qi−1)−p(qi−qi−1)

]

×Z1(β,p)−1e−φβ(qn+1−qn)−p(qn+1−qn). (7.9)

The convenient factorization property of the probability πα,β
p,n (q1, . . . , qn, qn+1) displayed in

(7.9), which implies that the variables q1 and qj − qj−1, j = 2, . . . , n + 1, are independent,
has prompted the use of the pressure ensemble for equilibrium systems, without any refer-
ence to dynamics. The requirement that particles only interact with their first neighbors is
usually imposed artificially (see, however, [25]). In our model this condition arises naturally
from the dynamics. Note that qn −q1, the width of the fat shock, is thus represented as a sum
of independent random variables; this is consistent with its Gaussian distribution in regions
I and II of the fixed volume ensemble (see Remark 4.1).

One easily checks that (writing now πα,β
p,n = π )

〈q1〉π = − d

dp
log Z1(α) = α(1 + z)

z(z + 2α − 1)
,

〈
qj − qj−1

〉

π
= − d

dp
log Z2 = 1

z
, j = 2, . . . , n, (7.10)

〈qn+1 − qn〉π = − d

dp
log Z1(β) = β(1 + z)

z(z + 2β − 1)
.

Note that when z approaches its lower bound, which is 0 if α,β ≥ 1/2 and max{1 − 2α,1 −
2β} otherwise, the average size 〈qn+1〉π of the system goes to infinity for every n ≥ 1; there
is simply not enough pressure to confine the system. To agree with standard definitions we
have defined the potentials φα in (7.1) so the size of the system in the absence of boundary
terms, that is, 〈qn − q1〉π , goes to infinity when p → 0 (z → 0).

To find the appropriate pressure corresponding to the canonical ensemble with L = n/γ

studied above we must set the expected system length

〈qn+1〉π = 〈q1〉π +
n∑

j=2

〈
qj − qj−1

〉

π
+ 〈qn+1 − qn〉π = − d

dp
log Z α,β(p,n), (7.11)

equal to L and solve for p (or z), subject to the restrictions (7.7). With (7.10) the equation
to be solved becomes

α(1 + z)

z(z + 2α − 1)
+ n

z
+ β(1 + z)

z(z + 2β − 1)
= n

γ
. (7.12)
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We will discuss the solution of this equation in various regions of the phase plane; it is useful
to bear in mind that each of the three terms on the left hand side increases as z decreases
from 1 to its lower limit max{0,1 − 2α,1 − 2β}.

Consider first region I, where α,β > (1 − γ )/2. Since for z = γ the left hand side of
(7.12) is n/γ + O(1), where the O(1) term is positive, the solution must be of the form
z = γ +O(1/n). In the limit n → ∞ we thus have z = γ or p = − log(1 − γ 2). In this case
〈q1〉π and all

〈
qj − qj−1

〉

π
, j = 2, . . . , n + 1, are of order unity, so the bulk of the system

has, in the limit n → ∞, the same structure as that obtained from our NESS when L → ∞
in region I.

In Region II, where α < β and α < (1 − γ )/2, we have from z > 1 − 2α > 1 − 2β that
the third term in (7.12) is O(1), and from z > 1 − 2α > γ that the first term must be O(n),
i.e., we must have z = 1 − 2α + O(1/n). In fact we find easily that for large n,

z � 1 − 2α + 2α(1 − α)

1 − 2α − γ

1

n
. (7.13)

Now 〈q1〉π is of order n but 〈qn+1 − q1〉π is still of order 1; this corresponds to the fat
shock being fixed to the right wall, i.e., to what we see in region II. The situation in region
III is of course obtained by interchanging α with β and left with right. In the case when
α = β < (1−2γ )/2 one sees again that z � 1−2α + c/n and that 〈q1〉π = 〈qn+1 − qn〉π are
both of order n; this simply means that the average position of the fat shock is in the middle.

One may of course analyze the pressure ensemble directly, rather than looking for the
correspondence with the open system of fixed length; the key question is how one allows
p or equivalently z to vary with the number n of (second class) particles. If z is held fixed
(necessarily in the range (7.7)) then the behavior of the system corresponds to that of the
open system in region I. If α < 1/2 and α < β , and one takes z = 1 − 2α + c/n then the
behavior is as in region II; similarly if β < 1/2 and β < α one obtains region III behavior by
taking z = 1 − 2β + c/n, and if α = β < 1/2 such a z value gives behavior corresponding
to the II/III boundary. A detailed analysis of the ensemble, for example of the shape of
the profiles of the fat shock, would essentially repeat the analysis in the fixed L, i.e., fixed
overall density γ , ensemble studied earlier, and we will not take up these questions again
here.

Note that for almost all permissible values of the pressure our system is in region I; only
by fine tuning the pressure to change with n in a range of order 1/n do we get configurations
as in regions II or III. This is reminiscent of what happens when one goes from a fixed
magnetization to a fixed external magnetic field h in the Ising model at low temperatures,
in dimension two or higher. The whole coexistence region, corresponding to the average
magnetization being smaller than the spontaneous magnetization, corresponds to the single
value h = 0.

Other choices of z can lead to regimes different from those considered in the present
work. For example, if we again suppose that α = β < 1/2, but now take z closer than order
1/n to 1−2α—to be specific, say z = 1−2α+c/n2—then 〈qn+1〉π is of order n2 and hence
the density of second class particles is zero.

8 Concluding Remarks

1. As noted already in several places above, the local properties of our system away from
the boundaries approach, as L → ∞, those of the states of the two species TASEP on the
lattice Z. Because of this it will be useful to describe here some known properties of the
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(extremal, translation invariant) NESS’s of that system, i.e., of the states νρ0,ρ1 introduced
in Sect. 5. These states differ from those of other models for which the NESS of the finite
open system can be solved exactly, such as the one species simple exclusion process and the
zero range processes [9, 26, 27], in that they are not product measures; this is so despite the
fact that their projections (marginals) on the configurations of first class particles alone, or
on the configurations of holes alone, are in fact Bernoulli. The states νρ0,ρ1 may be obtained
[9] as the N → ∞ limits of states of a two component TASEP on a ring of N sites, with
Nα = ραN particles of type α, α = 0,1,2, where ρ2 = 1 − ρ0 − ρ1; see also [16].

As noted in [9], the structure of the states νρ0,ρ1 is quite intricate, containing several
mysterious features which we still do not understand in any direct intuitive way. They are
not even Gibbs measures [16], even though all the truncated correlation functions involving a
finite number of sites decay exponentially fast. This decay follows from the (mysterious) fact
that, conditioned on the presence of a second class particle at site i, the measure factorizes:
the left and right sides of i become independent. For the corresponding property for the
open system studied in this paper see Remark 2.1. Another (mysterious) fact is that if one
conditions on the presence of a second class particle at i then the particles to the right of i,
and the holes to the left of i, have this Bernoulli property [9].

Another related property of the states νρ0,ρ1 is that if one conditions on there being a
first class particle (respectively a hole) at site i then the measure to the left (respectively
right) of i is the same as if there was no conditioning at all, i.e., the same as that described
in the first paragraph of this section. (This may be expressed colloquially by saying that if
one observes that the fastest horse is in front then one gains no information about the rest.)
The property has in fact been established in not only the two species but also the n-species
TASEP (see [28], Proposition 6.2), using a representation of the stationary measure based
on queuing theory; a direct proof for the two species model may be given using the two
properties of second class particles noted in the previous paragraph. We remark that the
property of factorization around a second class particle does not extend in a direct way to
the n-species model [28].

2. The fact that the measures νρ0,ρ1 are not product measures gives extra structure to the
local states μx,c discussed in Sect. 5, which are superpositions of such measures. We note
here however that as in the case of the one component TASEP, when such a superposition
occurs only on the shock line α = β < 1/2, the translation invariant measures which enter
into the superposition (and which correspond to the measures on one side or another of a
shock) all have the same current. This can be interpreted as saying that the properly averaged
local current does not fluctuate. These averages can be obtained either as long time averages
of the stochastic flux across a single bond, or as spatial averages over an interval of length
K , with K → ∞ after L → ∞. We believe that the convergence of the average total flux
across an open system to a deterministic value, as L → ∞, is a general property of the
NESS of systems like those discussed here, but do not know how to prove this directly at
the present time. It seems reasonable to expect similar behavior in higher dimensions and
different settings, e.g., for driven diffusive systems on a torus [29].

3. It follows from the “separating” property of conditioning on the presence of a second
class particle at a given site that the distribution under νρ0,ρ1 of the second class particles
alone is given by a renewal process [9, 17]. When the current J2 vanishes, i.e., when ρ0 =
ρ1 = (1 − ρ2)/2, then (as noted in Sect. 7) the distribution of the distance between nearest
neighbor particles in this process has a simple exponential dependence on ρ2 which can
be obtained from a pressure ensemble, with p = − log(1 − ρ2

2 ), as in region I of the open
system.
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Combining this expression for the pressure as a function of the density with standard ther-
modynamic relations we can obtain expressions for the chemical potential λ and Helmholtz
free energy a in the uniform infinite system of second class particles with density ρ2:

λ(ρ2) = − log

(
1 − ρ2

1 + ρ2

)

,

a(ρ2) = (1 − ρ2) log(1 − ρ2) + (1 + ρ2) log(1 + ρ2).

(8.1)

From (8.1) we can obtain the large deviation function for the probability of finding ρ̃2L

particles in an interval of L lattice sites [30] for any other density ρ̃2. The large deviation
for first class particles or holes alone is of course given by the properties of the Bernoulli
measure. Large deviation properties of the full measure have not, so far as we know, been
determined for the two species system.

4. Even knowing fully the properties of the infinite system still leaves open the problem
of how fast the correlations in the vicinity of a site �xL� approach those in the local measure
μx,c . This may be of particular interest in the case when μx,c is a superposition of extremal
infinite volume measures νρ0,ρ1 as discussed in Sect. 5. We might expect the L dependence
in that case, where typical density profiles differ from average ones, to be different from that
where the two coincide. We leave this as an open problem.

5. We now briefly describe two related model systems, containing both first and second
class particles on a ring, which are intermediate between those studied in [9] and in this
paper.

5.1 Recall the “truck” or “defect particle” model [12, 31–33], a standard two species
TASEP system: a single defect particle together with (first class) particles and holes, on a
ring of L + 1 sites, can exchange with a hole ahead of it (clockwise) at rate α and with a
particle behind it at rate β . Let us add to the ring also n (standard) second class particles,
which make the same exchanges as does the defect particle but at rate 1 in each case, and
which do not exchange at all with the defect particle. To be definite let us say that there are
n1 first class particles and n0 holes on the ring, with n + n1 + n0 = L. Then the stationary
measure for this system is almost the same as that of our open system: using the matrices
X0, X1, and X2 of Sect. 2, and introducing also Xδ = |Vβ〉〈Wα|, we find that a configuration
δ, τ1, . . . , τL, where δ represents the defect particle, has weight:

Tr(XδXτ1 · · ·XτL) = 〈Wα|Xτ1 · · ·XτL |Vβ〉, (8.2)

(compare (2.4)). The difference, of course, is that this is a canonical ensemble and the par-
tition function must be obtained by summing the weights over only those configurations
with the proper numbers of all species. This relation between this truck model on a ring of
L + 1 sites and the two species open system studied in this paper is completely parallel to
that between the usual defect particle model and the open one species TASEP. We expect
that details of the stationary state could be worked out in parallel to that of the usual defect
particle model, but we have not done so.

5.2 In the second model, the ring has N sites labeled by i ∈ [−N/2 + 1,N/2] and
contains N1 = ρ̄1N first class particles, N2 = ρ̄2N second class particles, and N0 = N −
N1 − N2 = ρ̄0N holes. The particles jump clockwise according to the TASEP rules given in
Sect. 1, except at one specified semi-permeable bond, say between site 0 and site 1, which
prohibits the passage of second class particles. (We can think of this bond as a restriction in
a channel).

Unfortunately we do not have an exact solution for this system. To see what happens,
however, we note that, as in the open system, the current J2 of second class particles will
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Fig. 4 Density profiles in a system with one semi-permeable bond: L = 1000

vanish in the stationary state. On the other hand, since we would have J2 = ρ̄2(ρ̄0 − ρ̄1)

if the system were uniform, a uniform state is possible only if ρ̄1 = ρ̄0. If ρ̄1 < ρ̄0 then J2

would be positive in the uniform system and second class particles would drift to the right;
the upshot is that there will be a fat shock of width w = ρ̄2N/(1−2ρ̄1) containing all second
class particles at density ρ2 = 1 − 2ρ1 pinned to the back of the barrier. If ρ̄1 > ρ̄2 then the
fat shock of width w = ρ̄2N/(1 − 2ρ̄0) will be pinned to the front of the barrier. In the case
ρ̄0 = ρ̄1 = (1 − ρ̄2)/2 the system will be uniform. See Fig. 4 for some typical profiles in this
system; note that N0, N1, and N2 have been chosen so that the bulk densities in figures (a)
and (b) here are the same as those in figures (a) and (e) of Fig. 2, but that the boundary
effects and finite density shock transition are noticeably different in the two models.

Letting N → ∞ with ρ̄1, ρ̄0 fixed would yield an infinite system with a barrier at the
bond (0,1). Consider first the case ρ̄1 < ρ̄0. To the right of the origin there would be no
second class particles and a uniform density of first class particles described by a product
measure. Far to the left of the barrier the state would be νρ̄0,ρ̄0 , i.e., a uniform state with
ρ1 = ρ0 = ρ̄1 and ρ2 = 1 − 2ρ̄1. We do not know, however, the structure of the system just
to the left of the barrier. Similar conclusions hold for ρ̄1 > ρ̄0.
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Appendix A: A Particular Representation

A representation of the algebra (2.2)–(2.3) which satisfies (2.6) may be obtained from [7]
and [9]:

X1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 . .

0 1 1 0
0 0 1 1
0 0 0 1 .

. . .

. .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, X0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 . .

1 1 0 0
0 1 1 0
0 0 1 1
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (A.1)
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X2 = X1X0 − X0X1 = [X1,X0] =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 . .

0 0 0 0
0 0 0 0
0 0 0 0
. .

. .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (A.2)

〈Wα| =
(

1,

(
1 − α

α

)

,

(
1 − α

α

)2

, . . .

)

, |Vβ〉 =

⎛

⎜
⎜
⎜
⎜
⎝

1
1−β

β

(
1−β

β
)2

...

⎞

⎟
⎟
⎟
⎟
⎠

. (A.3)

The exponential growth of the components of 〈Wα| and |Vβ〉 for certain values of α and β

in fact causes no concern here: because we always have n > 0, the matrix product needed
to calculate the probability of any configuration τ (see (2.4)) will contain at least one factor
X2, and using (2.6) one can see that this implies that the corresponding matrix element is
finite.

Appendix B: Asymptotics of the Partition Function

We summarize here the asymptotics of the partition function which are needed in Sect. 5.
For the case with no second class particles [7] we need Zα,β only when α = 1 and/or β = 1:

Zα,1(j,0) = Z1,α(j,0) ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1−2α

(1−α)2 ( 1
α(1−α)

)j , if α < 1/2,

2√
π

4j

j1/2 , if α = 1/2,

α2√
π(2α−1)2

4j+1

j3/2 , if α > 1/2.

(B.1)

The generating function is [12]

∞∑

L=1

λLZ
α,β

L,0 =
(

2α

2α − 1 + √
1 − 4λ

)(
2β

2β − 1 + √
1 − 4λ

)

. (B.2)

For the model with second class particles [2]:

• In region I, (αc < α,β)

Zα,β(L,n) = nαβ
√

L2 − n2

√
πL((2α − 1)L + n)((2β − 1)L + n)

(
4L2

L2 − n2

)L+1(
L − n

L + n

)n

;
(B.3)

• In region II, (α < αc,α < β)

Zα,β(L,n) = αβ(1 − 2α)

(β − α)

(
1

α(1 − α)

)L+1(
α

1 − α

)n

; (B.4)

• On the boundary of regions I and II, (αc = α < β)

Zα,β(L,n) = βn(L − n)

2L((2β − 1)L + n)

(
4L2

L2 − n2

)L+1(
L − n

L + n

)n

(B.5)
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• On the boundary of regions II and III, (α = β < αc)

Zα,β(L,n) = (1 − 2α)((1 − 2α)L − n)

(1 − α)2

(
1

α(1 − α)

)L(
α

(1 − α)

)n

(B.6)

• At the triple point, (αc = α = β)

Zα,β(L,n) = n(L − n)

2L(L + n)

√
L2 − n2

Lπ

(
4L2

L2 − n2

)L+1(
L − n

L + n

)n

. (B.7)

Asymptotics in Region III and on the I/III boundary are obtained from those of Region II
and the I/II boundary by exchange of α and β .

Appendix C: Finite Volume Corrections to Density Profiles

We consider here again the problem of finding asymptotic values of the density profiles,
beginning with a discussion of the method of [2]. The partition function can be expressed as

Zα,β(L,n) = αβ

α − β

[
R(L,n,β) − R(L,n,α)

]
, (C.1)

where

R(L,n,α) =
L−n∑

k=0

CL+n−1
L−n−k

1

αk+1
, (C.2)

with Cm
n the Catalan triangle numbers (3.8). An asymptotic analysis of (C.2) then leads,

through (C.1) and the formulas (3.13)–(3.14) for the densities, to the density asymptotics.
In [2] the asymptotic density at position x was calculated as

lim
L→∞

〈ηa(iL)〉
μ

α,β
L,�γL�

, (C.3)

with iL = �xL�. As observed in Sect. 5, however, if x is the location of the fixed shock in
regions II or III, and one considers limits as in (C.3) with iL = �xL�+c

√
L, then the limiting

density value depends on c. This c dependence may be calculated by the methods of Sect. 5
(see for example (5.22)); here we sketch briefly an alternate and more direct method which
extends the work of [2].

The key step is the computation of the asymptotics of R(L,n,α); it is convenient to
introduce αc = (L−n)/(2L) (see (1.2)). We must determine which terms in (C.2) dominate
the sum. If we let L → ∞ at fixed n and α there are three regimes: (i) α > αc , for which the
maximum of the summand is attained when k is of order L and the sum can be approximated
by a Gaussian integral; (ii) α < αc , in which the maximum is attained when k is of order
−L and the sum can be approximated by a geometric series; and (iii) α = αc , for which
the maximum occurs when k is of order 1 and the sum can be approximated by half of a
Gaussian integral. However, there are intermediate regimes in which the sum is dominated
by terms in which k is of order ±√

L, and it is these which generate the finite volume density
corrections that we seek.
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One needs an asymptotic estimate of R(L,n,α) which holds for all large L and n. Such
an estimate is R(L,n,α) ∼ R̃(L,n,α), where

R̃(L,n,α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − 2α)( 1
α(1−α)

)L+1( α
1−α

)n�(L(1−2α)−n√
α(L+n)

) α ≤ αc,

2nL

(n−L(1−2α))
√

πL(L2−n2)
( 4L2

L2−n2 )L

×(L−n
L+n

)n�(L(1−2α)−n√
α(L+n)

), α > αc;
(C.4)

here � is as in (5.18) and �(t) = √
2πet2/2|t |�(t). The asymptotic estimate R ∼ R̃ holds

in the sense that for α and the ratio n/L uniformly bounded away from 0 and 1 the quantity
|R/R̃ − 1| is small when L is large—more precisely, for any ε > 0 there is a constant Cε

such that |R/R̃ − 1| ≤ CεL
−1/2−ε . We remark that the two forms in (C.4) in fact agree for

αc < α < αc + O(1/
√

L).
From (C.1) and (C.4) one obtains similarly improved asymptotics for the partition func-

tion Zα,β(L,n), and the full density asymptotics then follows from the exact formulas of [2]
or Theorem 3.3.

References

1. Arita, C.: Exact analysis of two-species totally asymmetric exclusion process with open boundary con-
ditions. J. Phys. Soc. Jpn. 75, 065003 (2006)

2. Arita, C.: Phase transitions in the two-species totally asymmetric exclusion process with open bound-
aries. J. Stat. Mech. P12008 (2006)

3. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)
4. Andjel, E.D., Bramson, M., Liggett, T.M.: Shocks in the asymmetric exclusion process. Probab. Theory

Relat. Fields 78, 231–247 (1988)
5. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)
6. Derrida, B., Domany, E., Mukamel, D.: An exact solution of a one-dimensional asymmetric exclusion

model with open boundaries. J. Stat. Phys. 69, 667–687 (1992)
7. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model

using a matrix formulation. J. Phys. A 26, 1493–1517 (1993)
8. Schütz, G., Domany, E.: Phase transitions in an exactly soluble one-dimensional asymmetric exclusion

model. J. Stat. Phys. 72, 277–296 (1993)
9. Derrida, B., Janowsky, S.A., Lebowitz, J.L., Speer, E.R.: Exact solution of the totally asymmetric simple

exclusion process: shock profiles. J. Stat. Phys. 73, 813–842 (1993)
10. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin

(1999)
11. Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C.,

Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 19. Academic Press, London
(2000)

12. Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide.
J. Phys. A: Math. Theory 40, R333–R441 (2007)

13. Uchiyama, M.: Two-species asymmetric simple exclusion process with open boundaries. Chaos Solitons
Fractals 35, 398–407 (2008)

14. Evans, M.R., Foster, D.P., Godréche, C., Mukamel, D.: Asymmetric exclusion model with two species:
Spontaneous symmetry breaking. J. Stat. Phys. 80, 69–102 (1995)

15. Krebs, K., Jafarpour, F.H., Schütz, G.M.: Microscopic structure of travelling wave solutions in a class of
stochastic interacting particle systems. New J. Phys. 5, 145.1–145.14 (2003)

16. Speer, E.R.: The two species totally asymmetric exclusion process. In: Fannes, M., Maes, C., Ver-
beure, A. (eds.) On Three Levels: The Micro-, Meso-, and Macroscopic Approaches in Physics. NATO
ASI Series B: Physics, vol. 324, pp. 91–112. Plenum, New York (1994)

17. Ferrari, P.A., Fontes, L.R.G., Kohayakawa, Y.: Invariant measures for a two-species asymmetric process.
J. Stat. Phys. 76, 1153–1177 (1994)

18. Derrida, B., Lebowitz, J.L., Speer, E.R.: Shock profiles for the asymmetric simple exclusion process in
one dimension. J. Stat. Phys. 89, 135–167 (1997)



On the Two Species Asymmetric Exclusion Process 1037

19. Rakos, A., Paessens, M., Schütz, G.M.: Hysteresis in one-dimensional reaction-diffusion systems. Phys.
Rev. Lett. 91, 238302 (2003)

20. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Towards a nonequilibrium thermo-
dynamics: a self-contained macroscopic description of driven diffusive systems. 0807.4457

21. Feller, W.: An Introduction to Probability Theory and its Applications II, 2nd edn. Wiley, New York
(1971)

22. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences, A009766. http://www.research.att.
com/~njas/sequences/A009766

23. Hill, T.L.: Statistical Mechanics: Principles and Selected Applications. McGraw-Hill, New York (1956)
24. Percus, J.K.: Exactly solvable models of classical many-body systems. In: Lebowitz, J.L. (ed.) Simple

Models of Equilibrium and Nonequilibrium Phenomena. North-Holland, Amsterdam (1987)
25. Kac, M., Uhlenbeck, G.E., Hemmer, P.C.: On the van der Waals theory of the vapor-liquid equilibrium.

I. Discussion of a one-dimensional model. J. Math. Phys. 4, 216–228 (1963)
26. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related

models. J. Phys. A: Math Gen. 38, R195–R240 (2005)
27. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle sys-

tems out of equilibrium. J. Stat. Mech. P07014 (2007)
28. Ferrari, P.A., Martin, J.B.: Stationary distributions of multi-type totally asymmetric exclusion processes.

Ann. Prob. 35, 807–832 (2007)
29. Katz, S., Lebowitz, J.L., Spohn, H.: Non-equilibrium steady states of stochastic lattice gas models of fast

ionic conductors. J. Stat. Phys. 34, 497–537 (1984)
30. Derrida, B., Lebowitz, J.L., Speer, E.R.: Exact large deviation functional of a stationary open driven

diffusive system: the asymmetric exclusion process. J. Stat. Phys. 110, 775–810 (2003)
31. Derrida, B.: Systems out of equilibrium: some exactly soluble models. In: Hao, B. (ed.) Statphys 19, the

19th IUPAP International Conference on Statistical Physics, Xiamen, China, July 31–August 4, 1995.
World Scientific, Singapore (1996)

32. Mallick, K.: Shocks in the asymmetric exclusion model with an impurity. J. Phys. A. 29, 5375–5386
(1996)

33. Derrida, B., Evans, M.R.: Bethe ansatz solution for a defect particle in the asymmetric exclusion model.
J. Phys. A 32, 4833–4850 (1999)

http://www.research.att.com/~njas/sequences/A009766
http://www.research.att.com/~njas/sequences/A009766

	On the Two Species Asymmetric Exclusion Process with Semi-Permeable Boundaries
	Abstract
	Introduction
	The Matrix Ansatz
	Exchangeability of Measures
	The Fat Shock
	Local States in the Infinite Volume Limit in the Bulk
	Local States in the Infinite Volume Limit at the Boundaries
	The Pressure Ensemble for Second Class Particles
	Concluding Remarks
	Acknowledgements
	Appendix A: A Particular Representation
	Appendix B: Asymptotics of the Partition Function
	Appendix C: Finite Volume Corrections to Density Profiles
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


